mirror of
https://github.com/imputnet/cobalt.git
synced 2025-06-28 17:38:31 +00:00

Some checks failed
CodeQL / Analyze (${{ matrix.language }}) (none, javascript-typescript) (push) Waiting to run
Run tests / check lockfile correctness (push) Waiting to run
Run tests / web sanity check (push) Waiting to run
Run tests / api sanity check (push) Waiting to run
Run service tests / test service functionality (push) Has been cancelled
Run service tests / test service: ${{ matrix.service }} (push) Has been cancelled
50 lines
1.4 KiB
TypeScript
50 lines
1.4 KiB
TypeScript
import { AutoModel, AutoProcessor, RawImage } from "@huggingface/transformers";
|
|
|
|
const models = {
|
|
light: {
|
|
id: "briaai/RMBG-1.4",
|
|
input: "input",
|
|
},
|
|
heavy: {
|
|
id: "onnx-community/BiRefNet_lite",
|
|
input: "input_image",
|
|
}
|
|
}
|
|
|
|
export const removeImageBackground = async (file: File) => {
|
|
const image = await RawImage.fromBlob(new Blob([file]));
|
|
|
|
const model_type = "light";
|
|
const model = await AutoModel.from_pretrained(models[model_type].id, {
|
|
device: "wasm",
|
|
dtype: "fp32",
|
|
});
|
|
|
|
const processor = await AutoProcessor.from_pretrained(models[model_type].id, {});
|
|
|
|
if (model && processor) {
|
|
const { pixel_values } = await processor(image);
|
|
|
|
const { output } = await model({ [models[model_type].input]: pixel_values });
|
|
|
|
const mask = await RawImage.fromTensor(output[0].mul(255).to('uint8')).resize(image.width, image.height);
|
|
|
|
const canvas = document.createElement('canvas');
|
|
canvas.width = image.width;
|
|
canvas.height = image.height;
|
|
const ctx = canvas.getContext('2d');
|
|
|
|
if (!ctx) return;
|
|
|
|
ctx.drawImage(image.toCanvas(), 0, 0);
|
|
|
|
const pixelData = ctx.getImageData(0, 0, image.width, image.height);
|
|
for (let i = 0; i < mask.data.length; ++i) {
|
|
pixelData.data[4 * i + 3] = mask.data[i];
|
|
}
|
|
ctx.putImageData(pixelData, 0, 0);
|
|
|
|
return canvas;
|
|
}
|
|
}
|